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ABSTRACT ARTICLE HISTORY
Exponentiated models have been widely used in modeling various Received 6 May 2021
types of data such as survival data and insurance claims data. Accepted 2 March 2022

However, the exponentiated composite distribution models have not
been explored yet. In this paper, we introduce an improvement of
the one-parameter Inverse Gamma-Pareto composite model by expo-
nentiating the random variable associated with the one-parameter
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Inverse Gamma-Pareto composite distribution function. The good- distribution; exponentiated
ness-of-fit of the exponentiated Inverse Gamma-Pareto was assessed models; insurance
using three different insurance data sets. The two-parameter expo- data modeling

nentiated Inverse Gamma-Pareto model outperforms the one-param-
eter Inverse Gamma-Pareto model in terms of goodness-of-fit
measures for all datasets. In addition, the proposed exponentiated
composite Inverse Gamma-Pareto model provides a very good fit
with some well-known insurance datasets.

1. Introduction

Modeling claim size data is one of the major topic in actuarial science. Actuaries often
make decisions on financial risk management based on models. Thus, the selection of a
proper model for claim sizes is a key task in the actuarial industry. Under normal cir-
cumstances, a claim size data set consists of a large number of claims with small sizes
and few claims with large sizes. The common distributions in the literature such as
exponential, normal, etc. do not have the ability to incorporate all the features of a
claim size data set. Hence, the concept of composite distribution was introduced for
modeling claim size data. With such concept, many different composite models were
developed including lognormal-Pareto (Cooray and Ananda 2005; Scollnik 2007), expo-
nential-Pareto (Teodorescu and Vernic 2006), Weibull-Pareto (Preda and Ciumara
2006), and so on. The idea of general composite model was introduced later (Abu
Bakar et al. 2015). With such idea, a large number of possible composite models been
explored (Grun and Miljkovic 2019). In general, Pareto distribution is considered good
for modeling claims with large size. However, for modeling claims with small size, there
are many variations in the literature.

Aminzadeh and Deng introduced the Inverse Gamma-Pareto (IG-Pareto) model
recently (Aminzadeh and Deng 2019) and it was suggested as a possible model for data
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sets with a very heavy tail such as insurance data sets. This is a one-parameter IG-
Pareto composite distribution with appealing properties such as continuity and differen-
tiability. However, fitting a one-parameter IG-Pareto model to several insurance data
sets does not provide satisfactory performance, as we will show in the Numerical
Examples section. Specifically, the mode of fitted IG-Pareto distribution is not large
enough to describe the small claims with high frequencies within these insurance data
sets. Therefore, we will modify this one-parameter IG-Pareto model by introducing an
additional parameter.

Exponentiated distributions were first introduced by Mudholkar and Srivastava
(1993). The main idea of exponentiated distributions is to exponentiate the Cumulative
Density Function (CDF) of an existing distribution. It adds more flexibility to the trad-
itional models due to the extra parameter. Many modifications of the existing distribu-
tions were later introduced following the idea of Mudholkar and Srivastava. For
instance, Gupta and Kundu introduced exponentiated exponential (Gupta and Kundu
1999); Nadarajah pioneered exponentiated beta, exponentiated Pareto and exponentiated
Gamma (Nadarajah 2005a, 2005b, 2006); Nadarajah and Gupta initiated exponentiated
Gamma (Nadarajah and Gupta 2007) and Afify established exponentiated Weibull-
Pareto (Afify et al. 2016). However, none of these models were established using CDF
of a composite distribution. Moreover, all the exponentiated distributions mentioned
above were created by exponentiating the CDF, while the exponentiated Inverse-
Gamma model we propose was constructed by exponentiating the random variable
associated with the CDF of a composite distribution.

The rest of the paper is organized as follows. Section 2 provides the derivation of
exponentiated IG-Pareto model, the description of its behaviors and an algorithm to
obtain the maximum likelihood estimators of the model. We briefly summarize the
results from simulation studies in Section 3 to assess the accuracy and consistency of
the MLE. In Section 4, three numerical examples are presented. Conclusions are pro-
vided in Section 5.

2, Methodology
2.1. Introduction of the general composite model in loss data modeling

Let X be a positive real-valued random variable. The general form of a composite model
in loss data modeling was formally introduced (Scollnik 2007; Abu Bakar et al. 2015) as
follows:

1
—fi (%o, 0) 0<x<0
Felxlon 00,0, ¢) = 4 1 Z‘SCﬁ

mfz*(xhxz,e) 0 <x<oo

along with the continuity and differentiability conditions at the threshold 0:
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where f;" is the probability density function of random variable X when X takes values
between 0 and 0; f;° is the probability density function of the random variable X when
X takes values that are greater than 0. Here, ¢ is a positive parameter that controls the
weights of f; and f;.

The composite IG-Pareto model was established by Aminzadeh and Deng (2019) by
utilizing the theory introduced above. Suppose a random variable X is known to follow
a composite Inverse Gamma-Pareto distribution such that the pdf of X is as follows:

c(kf)*x*1e™

0<x<0
Fi(x]0) = L) (1)
c(a— k)0 >0
xockarl ’

where, ¢ =0.711384,k = 0.144351,a = 0.163947, o = 0.308298. Thus, their proposed
IG-Pareto model contains only one parameter . In the following subsection, we will
discuss the development of exponentiated composite IG-Pareto distribution specifically.

2.2. Development of the exponentiated composite inverse Gamma-Pareto
distribution

Now suppose a power transformation is applied to random variable X, say Y = ¢g(X) =
X'/, where g is monotone increasing for any 7 > 0. Also, X = g~'(Y) = Y". For any
n>0,¢g '(y) =" has continuous derivative on (0,00). Then the probability density
function of Y is given by:

c(k0)* (") e
(@) ny

C(O( B k)ea_k n—1 i
er}ﬂ y? >0

It can be easily shown that the above density function for exponentiated composite
IG-Pareto model is continuous and differentiable on the support (0, o).

The motivation for developing exponentiated IG-Pareto model as an improvement of
IG-Pareto model for loss data modeling is shown in Figures 1 and 2. Two different val-
ues for 0 are chosen as 5 (Figure 1) and 10 (Figure 2). For each 0 value, three n values
1, 5 and 10 are chosen, where =1 corresponds to the original one-parameter 1G-
Pareto composite model.

The figures indicate the composite exponentiated IG-Pareto model provides more
flexibility to the one-parameter IG-Pareto model due to the introduction of the power
parameter 7. For fixed value of 0, the mode of the composite exponentiated IG-Pareto
increases as 7 increases.

In an insurance context, one of the important topics is to maximize its benefit. Given
a insurance policy limit b and a pdf fy(y) associated with a loss random variable Y, the
limited loss random variable YAb is defined as following:

_JY ye(ob]
YAb_{b y € [boo)

n—1 0 Syn S 0

frly

0,n) = (2)



4 B. LIU AND M. M. A. ANANDA

o

- =

S 33
o
o

1.0

0.4

0 5 10 15 20 25 30

Figure 1. Composite exponentiated 1G-Pareto density (0 =5).
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Figure 2. Composite exponentiated IG-Pareto density (0= 10).

Correspondingly, the limited " moment of a loss random variable Y, denoted by
E[(YAb)'] is defined as:

b 00
E[(YAb)] = j Y ()dy + L by (y)dy )
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Suppose Y follows a exponentiated IG-Pareto distribution with parameters 0 and #. It is
easy to show that the ¢ limited moment of Y is given by:

r (“ - % g) (kO)T + b'T(a, k) — b'T (“’ g)
t 1/n
c 50 +b be (0,07
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where T'(.,.) stands for an upper incomplete gamma function, I'(a,x) = [~ *~e~'dt.

2.3. Parameter estimation

Let y1,...,y, be a random sample from the exponentiated composite pdf given in (2).
Without loss of generality, assume that y; < y, < ... <y, is an ordered random sample
generated from the pdf. The likelihood function can be written as follows:

k0
n
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The above likelihood assumes that there exist an value m such that y!, < 0 <y, .. The
MLE of 0 and 7 can be obtained by solving the following equations:

Q:

OL(0:n) _
o0
m@mmio
on o

Closed-form expressions for MLE of 0 and # cannot be obtained. In addition, m
needs to be determined before finding the solution of the above equations. However,
for the given values of # and m, the closed-form solution of 0 can be written as follows:

A am+ (a—k)(n—m)

0, . = 5
|11,m kzlmzu% ( )
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Table 1. Simulation results for =1 and n = 0.8.

n ﬁmean Bmean ’A7$D GSD

20 0.876 1.304 0.204 1.437
50 0.828 1.094 0.117 0.474
100 0.816 1.040 0.084 0.315
500 0.804 1.006 0.037 0.135

Thus, we designed a simple search algorithm to find the MLE of 0 and # by utilizing
Equation (5). The description of the search algorithm is as follows:

I. Obtain the sorted observations of a sample as y; <y, <... <y,

II. Determine the range of #, the parameter search will be done within the pre-
defined range. Note that # > 0. Hence, the search needs to be done within an
left-open interval with 0 as the left endpoint. The right endpoint of this interval
is data-specific.

III.  For a known 7 in the range, we start with m = 1 and calculate the MLE of 0
given 1 based on (5). If y! < é|n’m <yl, then m = 1. Otherwise jump to
step (IV)

IV. Letm =2 If y] < é|;1,m <yj, then m = 2. We shall continue the above steps
until m is identified. Once m is identified, keep 0/, ,, as the MLE of 0 for the
known 7.

V. Search for the optimal 5 that maximizes L(y|,#). Find the corresponding 6
using equation (5). These are the MLEs for # and 0.

3. Simulation

We conducted a limited simulation study to check the accuracy for the estimates of 0
and 7. For the selected sample size #, 0 and 5 values, N = 5000 samples were generated
from the composite density given in (2).

Tables 1-6 present the results of all simulations under different scenarios.
N mean> Opmean stand for the average of ) and 0; fisp and Osp denote the standard devi-

ation of 7 and 0 values, respectively.
We observed that when sample size n increases, the mean of the estimates of 0 gets

closer to the underlying true 0 under all simulation scenarios. Similarly, the mean of #

gets closer to the underlying true #. In addition, the standard deviation of both 0 and 7
decreases as the sample size increases for different settings of the simulation parameters.
Thus, the MLE of 0 and #n become more accurate as the sample size increases, which is
a property of maximum likelihood estimation.

4. Numerical examples

In this section, we presented the performance of the exponentiated IG-Pareto model
with three different insurance data sets, namely Danish Fire Insurance Data, Norwegian
Fire Insurance Data, and Society of Actuaries Group Medical Insurance Large Claims
Data. In our comparisons, allong with the proposed exponentiated IG-Pareto model, we
used Weibull, Inverse Gamma and IG-Pareto models. Danish Fire Insurance Data Set is
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Table 2. Simulation results for =1 and n=1.

n ﬁmean Bmean ’A7$D GSD

20 1.093 1.262 0.248 1.025
50 1.036 1.092 0.145 0.478
100 1.017 1.039 0.102 0.307
500 1.005 1.005 0.049 0.137

Table 3. Simulation results for =1 and n = 1.2.

n ﬁmean Omean i’ISD Osp

20 1.322 1.263 0312 1.094
50 1.240 1.091 0.174 0.463
100 1.220 1.048 0.120 0314
500 1.206 1.005 0.0582 0.140

Table 4. Simulation results for =5 and n = 0.8.

n ﬁmean Omean ﬁSD Osp

20 0.877 7.464 0.203 9.776
50 0.829 5.555 0.117 1.992
100 0.813 5.276 0.082 1.263
500 0.805 5.049 0.037 0.512

Table 5. Simulation results for =5 and = 1.0.

n ;’mean Omean ’;ISD Osp

20 1.098 7.256 0.258 6.480
50 1.036 5.626 0.146 2.070
100 1.017 5.269 0.101 1.232
500 1.003 5.048 0.049 0.511

Table 6. Simulation results for =5 and n = 1.2.

n ﬁmean Omean ﬁSD Osp

20 1317 7.245 0.305 7.213
50 1.244 5.566 0.173 2.025
100 1.224 5.283 0.121 1.261
500 1.206 5.059 0.0579 0.511

well analyzed data set (Griin and Miljkovic 2019). Griin and Miljkovic used 256 models
to analyze the Danish Fire Insurance Data. Utilizing all those 256 models are beyond
the scope of this paper. However, in their study, Weibull-Inverse Weibull came out as
the best fitting model to describe the Danish Fire Insurance Data. Therefore, in addition
to the abovementioned models, we included the Weibull-Inverse Weibull model in our
study. Furthermore, we include the Weibull-Pareto model since we want to pick another
composite model with the Pareto tail for comparison purposes. In fact, according to
Griin and Miljkovic, Weibull-Pareto composite model came out as the best model
among all the composite distributions with the Pareto tails.

4.1. Goodness-of-fit of the exponentiated 1G-Pareto model

To compare the performance of the different models when fitting the insurance data-
sets, NLL, AIC, BIC, AICc and CAIC were used. The description of the measures are
listed as follows:
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e NLL: Negative Log-Likelihood is defined as the additive inverse of the loglikeli-
hood function as follows:

NLL = —logL(0|y)

e AIC: Akaike’s Information Criterion (Burnham and Anderson 2002) is defined
as follows:

AIC = —2logL(8ly) + 2k,

where k is the number of free parameters.
e BIC: Bayesian Information Criterion (Burnham and Anderson 2002) is provided
as follows:

BIC = —2logL(0|y) + klog(n),

where k is the number of parameters and n is the sample size of the data set.
e AICc: Hurvich and Tsai’s Criterion (Hurvich and Tsai 1989) is provided as fol-
lows:

2nk

AICc = —2logL(0 S
Ce og(Iy)+(n_k_1)

e CAIC: Bozdogan’s criterion (Bozdogan 1987) is provided as follows:
CAIC = —2logL(0ly) + k(log(n) + 1),

R software was used to compute the MLEs of the parameters in different models as
well as NLL, AIC, BIC, AICc, and CAIC values.

4.2. Value-at-Risk

The estimation of extreme quantiles Q(p) with p being large is an important topic in
insurance data modeling. These extreme quantiles are named as Value-at-Risk (VaR).
For a loss random variable, VaR at the level of p is defined as:

P(X < VaR,(X)) = p,

In the context of insurance industry, VaR represents the amount of capital that an
insurance company needs to have to protect the company against bankruptcy due to
extreme claims.

4.2.1. Case 1: Danish fire insurance data
Danish fire insurance data was widely used by many researchers to check the perform-
ance of different composite models. The data set contains 2492 claims in millions of
Danish Krones (DKK) from the years 1980 to 1990. From the SMPracticals package in
R (Davison 2019), we were able to obtain the data and complete the analysis. The histo-
gram of this data set is presented as Figure 3.

Table 7 provides the results from this data set. Exponentiated IG-Pareto model out-
performs the original one-parameter IG-Pareto model in terms of NLL, AIC, BIC, AICc,
and CAIC. This is consistent with Figure 4. Figure 4 presents the comparison of IG-
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Figure 3. Histogram of Danish Fire Insurance Data Set.

Pareto model, exponentiated IG-Pareto model and the Gaussian kernel density estimate
of the Danish Fire Insurance Dataset. Exponentiated IG-Pareto model provides a satis-
factory fit to the Danish Fire Insurance Data while the original one-parameter IG-
Pareto model does not fit the data well. Among the three two-parameter models we
chose, Inverse-Gamma model performed slightly better compared to exponentiated IG-
Pareto model. However, in terms of NLL, AIC, and BIC, the exponentiated IG-Pareto
model gives a better performance compared to the two-parameter Weibull model. Both
Weibull-Inverse Weibull and Weibull-Pareto composite models perform better than the
proposed exponentiated IG-Pareto model in terms of all the goodness-of-fit measures.

4.2.2. Case 2: Norwegian fire insurance data

Similar to the Danish fire insurance loss data set, the Norwegian fire insurance data was
used by several researchers to investigate the performance of various loss models. The
data set consists of 9181 claims in 1000s of Norwegian Krones (NKK) from the years
1972 to 1992 for a Norwegian insurance company. We obtained the data set through R
package Relns (Reynkens and Verbelen 2020). Note the claims with size less than
500,000 NKK are forced to be 500,000 NKK. However, none of the claim values from
the year 1972 are truncated, and therefore we selected the data from the year 1972 to
assess the performance of the proposed model. Dealing with the truncated data is
beyond the scope of this article.

Figure 5 shows the histogram of the data set. The claim data from the year 1972 con-
sists of 97 values and the claim values in millions of Norwegian Krones (NKK) are
as follows:

0.520, 0.529, 0.530, 0.530, 0.544, 0.545, 0.546, 0.549, 0.553, 0.555, 0.562, 0.565, 0.565,
0.568, 0.579, 0.586, 0.600, 0.600, 0.604, 0.605, 0.621, 0.627, 0.633, 0.636, 0.667, 0.670,
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Table 7. Goodness-of-fit of different models to the Danish fire data based on MLEs.

Model p NLL AlC BIC AlCc CAIC
Weibull 2 5270.5 10545.0 10556.6 10545.0 10558.6
Inverse Gamma 2 4097.9 8199.8 8211.4 8199.8 8213.4
Inverse Gamma-Pareto (One-Parameter) 1 6983.8 13969.6 13975.5 13969.6 13976.5
Exponentiated Inverse Gamma-Pareto 2 4287.7 8591.0 8590.0 8579.4 8593.0
Weibull-Pareto 4 3823.7 7655.4 7678.6 7655.4 7682.5
Weibull-Inverse Weibull 4 3820.0 7648.0 76713 7648.0 76753
—— Gaussian Kernel Density Estimate
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Figure 4. Density Plot of Danish Fire Insurance Data with corresponding exponentiated IG-Pareto and
IG-Pareto model fit.

0.671, 0.676, 0.681, 0.682, 0.699, 0.706, 0.725, 0.729, 0.736, 0.741, 0.744, 0.750, 0.758,
0.764, 0.767, 0.778, 0.797, 0.810, 0.849, 0.856, 0.878, 0.900, 0.916, 0.919, 0.922, 0.930,
0.942, 0.943, 0.982, 0.991, 1.051, 1.059, 1.074, 1.130, 1.148, 1.150, 1.181, 1.189, 1.218,
1.271, 1.302, 1.428, 1.438, 1.442, 1.445, 1.450, 1.498, 1.503, 1.578, 1.895, 1.912, 1.920,
2.090, 2.370, 2.470, 2.522, 2.590, 2.722, 2.737, 2.924, 3.293, 3.544, 3.961, 5.412, 5.856,
6.032, 6.493, 8.648, 8.876, 13.911, 28.055

Table 8 presents the goodness-of-fit results from this data set. Similar to what we
observed for the Danish Fire Insurance Data, the Exponentiated IG-Pareto model per-
formed better than the original one-parameter IG-Pareto model in terms of all good-
ness-of-fit measures: NLL, AIC, BIC, AICc, and CAIC. This is consistent with Figure 6,
where exponentiated IG-Pareto model fits with the Norwegian Fire Insurance Data sat-
isfactorily while the original one-parameter IG-Pareto model does not fit this data set
well. Among the three two-parameter models we chose, exponentiated IG-Pareto model
performed the best in terms of all these goodness-of-fit criteria including NLL, AIC and
BIC. In terms of BIC and CAIC, the exponentiated IG-Pareto model also demonstrated
comparable performance against the Weibull-Inverse Weibull model and the Weibull-
Pareto model. However, both of these models still performed better in terms of AIC
and AICc.
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Figure 5. Histogram of Norwegian Fire Insurance Data Set from Year 1972.

Table 8. Goodness-of-fit of different models to the Norwegian fire insurance data from year 1972
based on MLEs.

Model p NLL AlC BIC AlCc CAIC
Weibull 2 158.7 321.4 326.6 321.5 328.6
Inverse Gamma 2 167.2 3384 343.6 338.6 345.6
Inverse Gamma-Pareto (One-Parameter) 1 221.8 445.7 448.2 445.7 449.2
Exponentiated Inverse Gamma-Pareto 2 96.1 196.2 201.3 196.3 2033
Weibull-Pareto 4 91.2 190.4 200.7 190.8 204.7
Weibull-Inverse Weibull 4 90.5 189.0 199.3 189.4 203.3

4.2.3. Case3: Society of actuaries (SOA) group medical insurance large claims data
The SOA Group Medical Insurance Claims is a publicly available data set that was pub-
lished in year 1997. This data set contains 75,789 claims from year 1991 in US Dollars
(USD). This data set is available in R package Relns (Reynkens and Verbelen 2020). For
the analysis concern, we rescaled the claim sizes so all the claim sizes had a unit of
10,000 USD in our analysis. The histogram of this data set is shown in Figure 7.

Table 9 illustrates the goodness-of-fit results for this medical insurance data set. With
the medical insurance data set, exponentiated IG-Pareto model outperforms all the
other methods with respect to all the goodness-of-fit measures. Figure 8 also demon-
strates the exponentiated IG-Pareto model provides a very good fit to this data.
Furthermore, it is clear that the one-parameter IG-Pareto model is not a good fit for
this data set.

Table 10 presents VaR estimates for different models at the level of 0.90,0.95 and
0.99. Our model provided the closest fit compared to the empirical estimates of VaR at
the level of 0.90 and 0.95. However, Weibull-Pareto composite model provided the
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—— Gaussian Kernel Density Estimate
- -~ Exponentiated IG-Pareto
IG-Pareto

0.8

0.6

Density

0.2
1

VA RPN

0.0

T T T T T T T
0 5 10 15 20 25 30

N =97 Bandwidth = 0.2236

Figure 6. Density Plot of Norwegian Fire Insurance Data from year 1972 with corresponding exponen-
tiated IG-Pareto and IG-Pareto model fit.
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Figure 7. Histogram of SOA Group Medical Insurance Large Claims.

closest estimate among all models at the 0.99 level, compared to its empirical counter-
parts. Notice in terms of all the goodness-of-fit measures, Weibull-Pareto is not the best
model. This indicates a model that provides the best fit to the whole data set does not
necessarily provides the best performance at the extreme upper tail area.
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Table 9. Goodness-of-fit of different models to the SOA data based on MLEs.
Model p NLL AlC BIC AlCc CAIC

Weibull 204223.9 408451.8 408470.3 408451.8 408472.3
Inverse Gamma 173619.6 554883.8 554893.0 554883.8 554894.0
Inverse Gamma-Pareto (One-Parameter) 277440.9 347243.2 347261.7 347243.2 347263.7
Exponentiated Inverse Gamma-Pareto 160836.6 321677.2 321695.7 321677.2 321697.7
Weibull-Pareto 209464.3 418936.6 418973.5 418936.6 418977.5
Weibull-Inverse Weibull 167745.8 335499.6 335536.5 335499.6 335540.5
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Figure 8. Density Plot of SOA Group Medical Large Claims with corresponding exponentiated |G-
Pareto and 1G-Pareto model fit.

Table 10. Comparison of VaR of different models for SOA Group Medical Claims Data.

Model VaR(0.90) VaR(0.95) VaR(0.99)
Empirical estimates 10.18 14.76 30.60
Weibull 12.24 15.01 20.93
Inverse Gamma 9.29 11.78 19.25
Inverse Gamma-Pareto (One-Parameter) 1.36 x10° 9.36x107 1.72x10'?
Exponentiated Inverse Gamma-Pareto 9.77 14.54 36.58
Weibull-Pareto 13.48 17.66 27.60
Weibull-Inverse Weibull 8.67 11.40 21.17

5. Conclusion

In this paper, we proposed a new exponentiated IG-Pareto model to improve the per-
formance of the original one-parameter IG-Pareto model. We provide an algorithm to
find the MLE of 0 and 7 in Section 2. Such algorithm presents the ability to identify the
MLE as the estimates for both 0 and # become more accurate as the sample size gets
larger in all simulation scenarios. Three numerical examples are provided and the new
exponentiated IG-Pareto model outperforms the original IG-Pareto model for all the
examples. For the SOA Group Medical Insurance Large Claims data set, the
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exponentiated IG-Pareto model provided the best fit to the data among all the models.
The development of this model is promising since such exponentiation approach can
also be applied to other composite models.
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